U-V method/ Modified Distribution Method/ Modi Method

Checking for optimality after initial solution has been obtained

Recalling the steps in solving TP

- To find an initial basic feasible solution (IBFS)
- To check the above solution for optimality
- To revise the solution

IBFS for a given TP;

- TC = (200 * 3) + (50 * 1) + (250 * 6) + (100 * 5) + (250 * 3) + (150 * 2) = 3700
- Now we have to check for optimality i.e., the TC of 3700 is optimum or can it be reduced further?

200 3	50 1	7	4
2	250 6	100 5	9
8	3	250 3	150 2

IBFS

- Cells in which allocations are made are called occupied cells or basic cells or allocated cells
- Cells in which no allocations are made are called non-basic cells
- When checking for optimality we have to evaluate non basic cells to check if allocating into these cells will reduce the total cost.

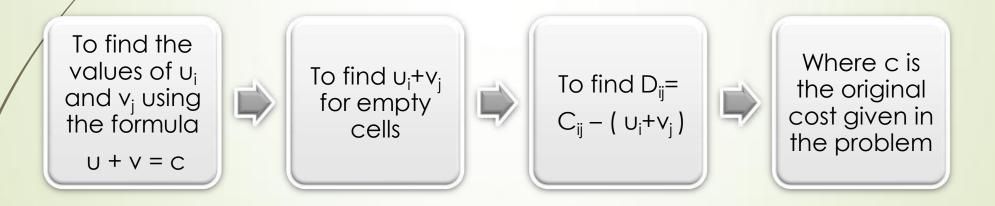
Condition for applying optimality test

- Check whether m + n 1 is equal to the total number of allocated cells or not where m is the total number of rows and n is the total number of columns.
- In this case m = 3, n = 4 and total number of allocated cells is 6 so m + n 1 = 6.
- (The case when m + n 1 is not equal to the total number of allocated cells is a case of degeneracy)

Modi method of optimality testing

- For U-V method the values u_i and v_j have to be found for the rows and the columns respectively.
- As there are three rows so three u_i values have to be found i.e. u₁ for the first row, u₂ for the second row and u₃ for the third row.
- Similarly, for four columns four v_j values have to be found i.e. v₁, v₂, v₃ and v₄.

How to find out the value of $D_{ij} = C_{ij} - (u_i + v_j)$?



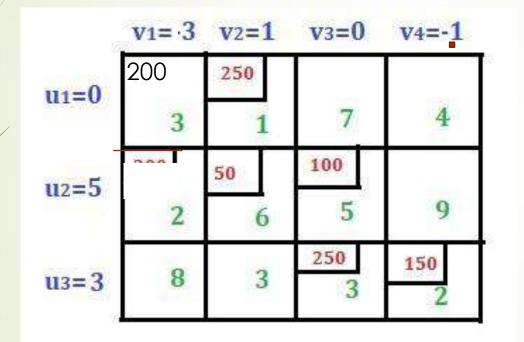
U-v method/ modi method Occupied cells – c_{11} , c_{12} , c_{22} , c_{23} , c_{33} , c_{34}

	V1 =	V 2=	V 3=	V 4=
u 1 =	200	50	7	4
u 2 =	2	250 6	100 5	9
u 3 =	8	3	250 3	150 2

Finding ui and vi values for basic cells

- $\mathbf{u}_i + \mathbf{v}_j = \mathbf{C}_{ij}$ where \mathbf{C}_{ij} is the cost value (only for the allocated cells)
- Start by assigning any of the three u_i or any of the four v_i values as 0
- Let us assign $\mathbf{u}_1 = \mathbf{0}$ in this case
- Then using the above formula we will get $v_1 = 3$ as $u_1 + v_1 = 3$ (i.e. C_{11})
- $v_2 = 1$ as $u_1 + v_2 = 1$ (i.e. C_{12})
- Similarly, we have got the value for v₂ = 3 so we get the value for u₂ = 5 which implies v₃ = 0.
- From the value of $v_3 = 0$ we get $v_3 = 3$ which implies $v_4 = -1$

u_i and v_j values



Net evaluations for unallocated cells

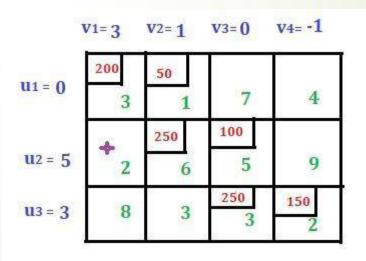
- d_{ij} = C_{ij} [u_i + v_j] for each unoccupied cell i.e., cells in which no allocation is made earlier
- 1. For C_{13} , $d_{13} = 7 [0 + 0] = 7$ (here $C_{13} = 7$, $u_1 = 0$ and $v_3 = 0$)
- 2. For C_{14} , $d_{14} = 4 [0 + (-1)] = 5$
- 3. For C₂₁, d₂₁ = 2 [5 + 3] = -6
- 4. For C₂₄, d₂₄ = 9 [5 + (-1)] = 5
- 5. For C_{31} , $d_{31} = 8 [3 + 3] = 2$
- 6. For C₃₂, d₃₂ = 3 [3 + 1] = -1

Optimality rule: stop if all $(d_{ij} \ge 0)$

- If all net evaluations d_{ij} are zero or positive, then the total cost cannot be reduced further;
- Current total cost is the optimal total cost and the current solution is the optimal solution;
- Existence of negative d_{ii} s implies scope for improving the solution;
- Choose the cell having most negative d_{ii} value to enter the basis;
- Here most negative value is -6 and corresponds to cell C₂₁
- Now this cell is new basic cell. This cell will also be included in the solution.

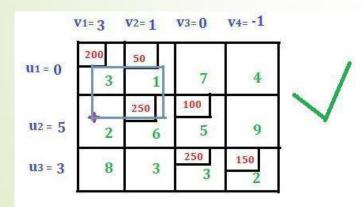
Moving towards optimality

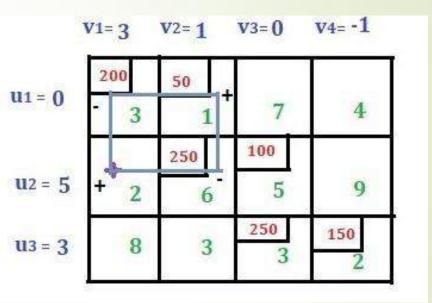
- Form loop from the chosen non-basic cell
- Starting from the new basic cell draw a closed-path in such a way that the right angle turn is done only at the allocated cell or at the new basic cell



Moving towards optimality

Assign alternate plus-minus sign to all the cells with right angle turn (or the corner) in the loop with plus sign assigned at the new basic cell





How to revise the solution?

Mark $+\theta$ in the place where there is a negative value

Proceed with the loop

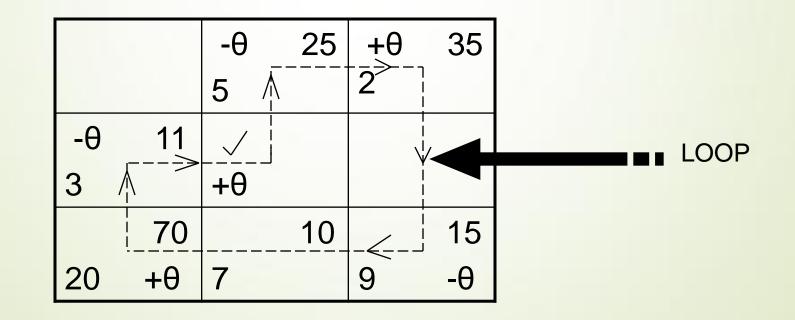
Direction of loop can be changed at only places where there is a allotment

mark + θ and – θ where the loop changes its direction

Observe – θ cells and take the least allocation

Add the value of θ where + θ is there and subtract the value of θ where – θ is there

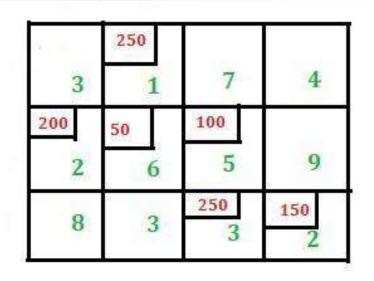
Model of a loop



Revising the allocations

- Consider the cells with a negative sign. Compare the allocated value (i.e. 200 and 250 in this case) and select the minimum (i.e. select 200 in this case)
- Now subtract 200 from the cells with a minus sign and add 200 to the cells with a plus sign
- Draw a new iteration
- Cell C₁₁ goes away from the basis and cell C₂₁ becomes the new basic cell

Revised allocations and the new solution



- Revised TC : (250 * 1) + (200*2) + (50 * 6) + (100 * 5) + (250 * 3) + (150 * 2) = 2500
- Note that allocations will change only in cells with + or – sign. All other allocations remain the same

From initial to improved solution

Initial solution and initial TC = 3700

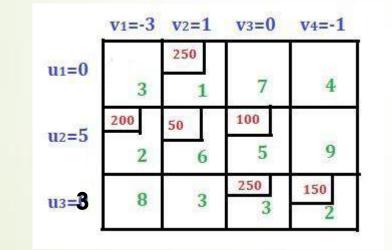
Revised solution and revised TC = 2500

<u>8</u>	250	6.	
3	1	7	4
200	50	100	
2	6	5	9
8	3	250 3	150

Optimality testing

- Test the revised solution for optimality. Stop if all net evaluations are zero or positive.
- Check the total number of allocated cells is equal to (m + n 1)
- Again find u_i values and v_j values using the formula u_i + v_j = C_{ij} where C_{ij} is the cost value only for allocated cell
- Assign $\mathbf{u}_1 = \mathbf{0}$ then we get $\mathbf{v}_2 = \mathbf{1}$. Similarly, we will get following values for \mathbf{u}_i and \mathbf{v}_j

ui and vi values and net evaluations dii



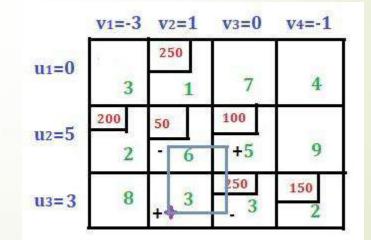
- 1. For C₁₁, d₁₁ = 3 [0 + -3] = 6
- 2. For C₁₃, d₁₃ = 7 [0 + 0] = 7
- **3.** For C_{14} , $d_{14} = 4 [0 + (-1)] = 5$
- 4. For C₂₄, d₂₄ = 9 [5 + (-1)] = 5
- 5. For C₃₁, d₃₁ = 8 [3+-3] = 8
- 6. For C₃₂, d₃₂ = 3 [3+1] = -1

Optimality rule: stop if all $(d_{ij} \ge 0)$

- If all net evaluations d_{ij} are zero or positive, then the total cost cannot be reduced further;
- Current total cost is the optimal total cost and the current solution is the optimal solution;
- Existence of negative d_{ii} s implies scope for improving the solution;
- Choose the cell having most negative d_{ii} value to enter the basis;
- Here most negative value is -1 and corresponds to cell C₃₁
- Now this cell is new basic cell. This cell will also be included in the solution.

Moving towards optimality

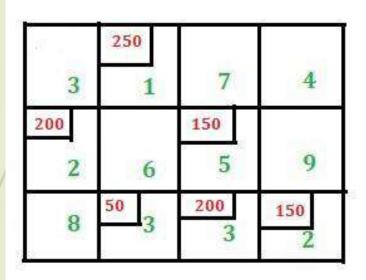
- Form loop from the chosen non-basic cell
- Starting from the new basic cell draw a closed-path in such a way that the right angle turn is done only at the allocated cell or at the new basic cell



Revising the allocations

- Consider the cells with a negative sign. Compare the allocated value (i.e. 50 and 250 in this case) and select the minimum (i.e. select 50 in this case)
- Now subtract 50 from the cells with a minus sign and add 50 to the cells with a plus sign
- Draw a new iteration
- Cell C₂₂ goes away from the basis and cell C₃₂ becomes the new basic cell

Revised allocations and the new solution

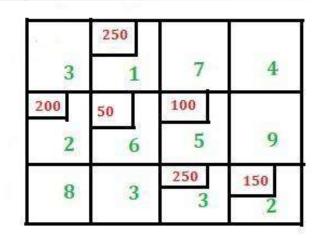


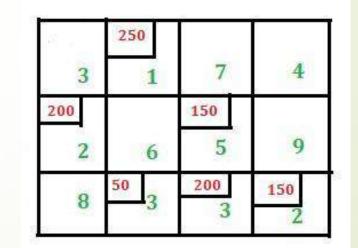
- Revised TC : (250 * 1) + (200*2) + (150 * 5) + (50 * 3) + (200 * 3) + (150 * 2) = 2450
- Note that allocations will change only in cells with + or – sign. All other allocations remain the same

From previous solution to improved solution

Initial solution and initial TC = 2500

Revised solution and revised TC = 2450





Optimality testing

- Test the revised solution for optimality. Stop if all net evaluations are zero or positive.
- Check the total number of allocated cells is equal to (m + n 1)
- Again find u_i values and v_j values using the formula u_i + v_j = C_{ij} where C_{ij} is the cost value only for allocated cell
- Assign $\mathbf{u}_1 = 0$ then we get $\mathbf{v}_2 = \mathbf{1}$. Similarly, we will get following values for \mathbf{u}_i and \mathbf{v}_j

ui and vi values and net evaluations dii

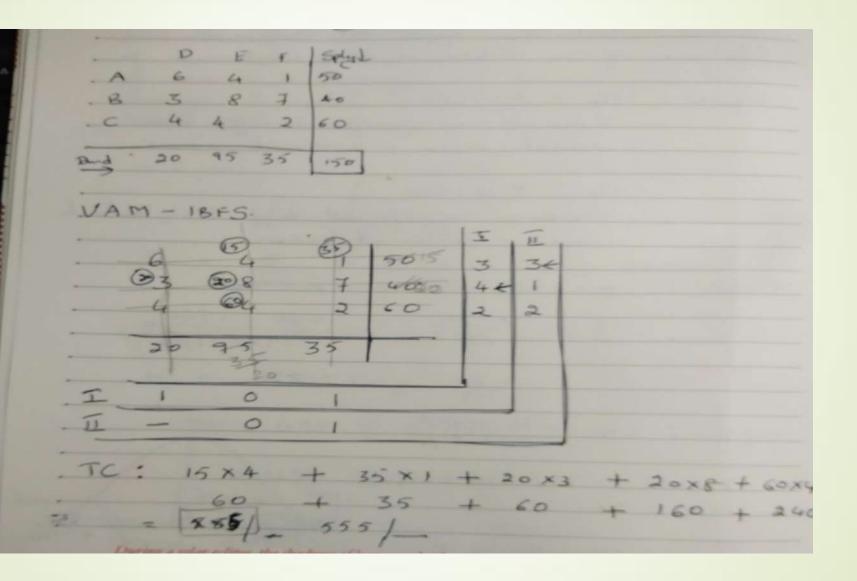
_	v1=-2	v 2=1	v3=1	v4=0
u1=0	Simil	250		
	3	1	7	4
u2=4	200		150	
u2-1	2	6	5	9
u3=2	8	50	200	150

3

- 1. For C₁₁, d₁₁ = 3 [0 + -2] = 5
- 2. For C₁₃, d₁₃ = 7 [0 + 1] = 6
- **3.** For C_{14} , $d_{14} = 4 [0 + 0] = 4$
- 4. For C₂₂, d₂₄ = 6 [4+ 1] = 1
- 5. For C₂₄, d₂₄ = 9 [4 + 0] = 5
- 6. For C₃₁, d₃₁ = 8 [2+ -2] = 8

Since all net evaluations are positive this is the optimal solution;

Problem 2:



Optimality test

