Stepping stone method

Example Problem: Given IBFS

Condition for applying any optimality test:

→Number of occupied cells is exactly equal to m+n-1, where 'm' is the number of rows, while 'n' is equal to the number of columns

 \rightarrow Unoccupied cells are AF, BD, BF, CD

TO	D	E	F	Supply
A	6 20	430	1	50
В	3	8 40	7	40
c	4	4 25	2 35	60
Demand	20	95	35	150

Optimality: m+n-1 = 3+3-1 = 5

Total Cost: 20*6 +30*4 + 40*8 +25*4 +35*2 = 730

Evaluating the unoccupied cells or empty cells

- Closed path is created for empty cell which starts from the unoccupied cell and returns to the same unoccupied cell;
- For "Closed loop", cells are selected in a sequence such that one cell is unoccupied, and all other cells are occupied;
- A pair of consecutive used cells lies either in the same row or the same column;
- The first and last cells in the closed loop lies either in the same row or column;
- Only horizontal and vertical movement is allowed;
- Once the loop is created, assign "+" or "-" sign alternatively on each corner cell of the loop, beginning with the "+" sign for the unoccupied cell;

Net evaluation for unoccupied cells

Calculate net change in TC i.e., d_{ij} for each unoccupied cell

Empty Cells: AF, BD, BF, CD

	To				T
From		D	E	F	Supply
А		-6 20	30	1	50
В		+3 <	-840	7	40
с		4	4 25	2 35) 60
Dema	nd	20	95	35	150
Cell	Clos	ed Loop	Net Cost Cha	inge	
BD	BD-	AD+AE-BE	3-6+4-8 = -	7	
AF	AF-0	CF+CE-AE	1-2+4-4 = -	1	
BF	BE-C	F+CE-BE	7-2+4-8 = 1	L	
CD	CD-4	AD+AE-CE	4-6+4-4 = -	-2	

Optimality test : Stop if all $d_{ij} \ge 0$

- ▶ If any d_{ii} is negative then TC can be reduce by taking that cell into the basis;
- Cell BD has negative d_{ij};
- Hence, TC can be reduced by taking this cell into the basis by forming a loop with + and - signs alternatively;

- Consider the cells with a negative sign. Compare the allocated value (i.e. 20 and 40 in this case) and select the minimum (i.e. select 20 in this case)
- Now subtract 20 from the cells with a minus sign and add 20 to the cells with a plus sign
- Draw a new iteration
- Cell AD goes away from the basis and cell BD becomes the new basic cell

Revise the allocations and calculate revised TC; The most favored cell is BD, since it has the highest opportunity cost

i.e. 7 To Supply D E F From 50 A 50 1 -6 +4 20 20 40 В 7 +3 -8 25 35 C 60 4 95 35 20 150 Demand

Total Cost: 20*3 +50*4 + 20*8 + 25*4 +35*2 = 590

Initial solution and initial TC

TO From	D	E	F	Supply
	6 20	430	1	50
В	3	8 40	7	40
c	4	425	2 35	60
Demand	20	95	35	150

Optimality: m+n-1 = 3+3-1 = 5

Total Cost: 20*6 +30*4 + 40*8 +25*4 +35*2 = 730

Revised solution and revised TC

The most favored cell is BD, since it has the highest opportunity cost i.e. 7

From A	D	E	F	Supply
	-6	+4 50	1	50
В	+3 20	8 20	7	40
С	4	4 25	2 35) 60
Demand	20	95	35	150

Total Cost: 20*3 +50*4 + 20*8 + 25*4 +35*2 = 590

Evaluate the unoccupied cells and test for optimality

- ► AD : + 6 4 + 8 3 = 7
- ► AF : + 1 2 + 4 4 = -1
- ▶ BF : + 7 2 + 4 8 = 1
- CD: +4 3 + 8 4 = 5
- Taking cell AF into the basis revise the allocations; calculate revised TC;

D 49----+9 6 A 8 3 F B 50-0 4+0 2=0 35-0 C 4 0=35 F D E 34 GD 6 A 208 203 I B 604 2 TC: 15×4 + 35×1 + 20×3 + 20×8 + 60×4 = 555/-Optimality Testing: AD: +6-4+8-3=7 BF: +7-1+4-8=2 CD: +4-3+8-4=5 CF: +2 -1 +4 -4= 1 2020.06.03 12:49

Revised solution

- Revised TC is 555 which is less than the previous TC of 590;
- Optimality rule : all $(dij \ge 0)$; hence, this is the optimal solution;

Problem 2:

VAM 10 TV TV I II II II 2 34 - -350 4 250 34 1 B 350-150 1 1 400 250200 1 1 0 200 300 350 150 1000 150 500 1 2 2 2 5 · - 2 2 2 11. - 3 2 FA IV. - 3, 2 -- 3p 2 -Initial TC: 250×1 + 200×2 + 150×5 + 50×3 + 200×3 + 150×2 = 250 + 400 + 300 + 150 + 600 + 300 = 26000/x 2450/-

Optimality test

St St Method. AI: +3-2+5-3+3-1=5 A : + 7 - 3 + 3 - 1 = 6 AIV: +4.-1+3-2 = 4 1311; +6-5+3-3=1 BIV: +9 - 2 + 3 - 5 = 5CI:+8.-3+5-2=8 All (di 7,0) stop; i opt sol is the cuerent one opt TC = 2450/_